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Project scope 

• Integrate, test and demonstrate a fully integrated 
hardware and software solution running on two robot 
systems and three additional blue force entities.  

• Reliably detect blue and red force entities within a 60m 
radius, 180deg around each robot.   

• The proposed solution is designed to run through 
multiple classes of robot systems starting from Small 
UGV’s through large vehicles such as trucks or tanks. 



Overall System Design 
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System installed on TALON 
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Stereo 
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Fisheye Vertical Stereo 
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Fisheye vertical stereo example 
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Stereo Reference Image 
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Appearance Classifiers 
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Person Classification  

• Accurate Person Recognition is difficult because of low numbers 
of pixels on target, deformation and articulation, and shadows/glare. 

• There are many modern approaches for person/pedestrian 
classification.  
– All of these use statistical learning methods to recognize patterns in the 

input.  
– However, none is perfect (less than 1 false positive per frame is 

“excellent” performance), because of the inherent difficulty of the task.  
• We use Hierarchical Feature Learning to automatically learn 

custom features and a classifier directly from data.   
• This is a fully supervised learning method, so it relies on a broad 

array of annotated ground truth data. We hand-labeled 25 video 
sequences for this purpose. 

• The Learning architecture is called a Convolutional Neural Net, and 
is described on the next slide. 

 



Hierarchical Feature Extraction 

• Convolutional Neural Networks (ConvNets) are one method 
for simultaneous feature learning and classifier training. Since they involve 
training multiple, stacked non-linear transforms, they are considered an 
architecture for Deep Learning. 

• ConvNet architectural components: 
– convolution layers  

• extract features using small local receptive fields 
• detect patterns with increasing complexity 
• use spatial or temporal weight-sharing   
• allow complex, nonlinear transformations 

 

– subsampling layers  
• pool features by local averaging 
• increase shift and scale invariance 
• reduce computational complexity 
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Person Classification 

• Our solution:  After comparison with other state-of-the-art methods, a 
Convolutional Neural Network (ConvNet) was chosen 

• Uses 2 inputs: appearance and disparity map  

• Network details:  
– Modeled after similar architectures built for autonomous navigation (LAGR) and 

handwriting recogntion (LeNet5) 
• 6 layer hierarchy (3 convolutional layers, 2 pooling layers, and a fully connected layer) 
• 80x40 pixel field of view with dual input layers  

– 1st layer: normalized 8bit grayscale  
– 2nd layer: normalized disparities 

• 8,000 trainable parameters. 

• Training process: Based on human-annotated videos 
• 800,000 labeled positives (ROIs with vehicles) and negatives (ROIs with no vehicles) 
• Network parameters are optimized using stochastic gradient descent 

 



Convolutional Neural Network 
Architecture for Pedestrian 
Classifier 

• 6 layer network with dual input layers: image and disparity 
• 2 outputs: person/non-person 
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Pedestrian: Dataset examples of 
image input layer 

B~T~ ------------GVSETS 



Pedestrian: Dataset examples of 
disparity input layer 
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Pedestrian Classification Results 

• We have performed extensive testing of the pedestrian 
classifier over datasets taken throughout the year 
– Each dataset contains 4-6 collections gathered in different 

environments including open areas, parking lot, and forest. 

• Metrics - We used standard metrics used in the 
literature: 
– Recall is the ratio of positive detections and all actual positives in 

the dataset.  This measures how well the classifier picks up 
people. 

– Precision is the ratio of true positives and all detections returned 
by the classifier. This measures how specific the classifier’s 
detections are to people. 

– False positives per image (FPPI) is the mean number of false 
positives per image. 

 



Pedestrian Classification Results 

• We have performed extensive testing of the pedestrian classifier 
over datasets taken throughout the year 
– Each dataset contains 4-6 collections gathered in different environments 

including open areas, parking lot, and forest. 
• Dataset: 2011.06.06: Fisheye and 80 degree 
• Five sequences, both stationary and moving camera 



Pedestrian Classification Results 

• Metrics - We used standard metrics used in the literature: 
– Recall is the ratio of positive detections and all actual positives in the 

dataset.  This measures how well the classifier picks up people. 
– False positives per image (FPPI) is the mean number of false positives 

per image. 
 

Fisheye 80 Deg 



Vehicle Classifier 

• Vehicle appearance varies widely due  
to viewpoint, body type, occlusion. 

• Our solution:  A second Convolutional Neural Network (ConvNet) 
was trained to recognize vehicles. 

• Can learn extreme variability in object appearance 
• Fast runtime performance 
• Trained on raw data without extensive preprocessing or parameter tuning 

• Network details: The vehicle ConvNet is similar to the pedestrian 
ConvNet: 

• 6 layer hierarchy (3 convolutional layers, 2 pooling layers, and a fully connected layer) 
• 60x30 pixel field of view  
• 12,000 trainable parameters. 

• Training process: Based on human-annotated videos 
• 580,000 labeled positives (ROIs with vehicles) and negatives (ROIs with no vehicles) 
• Network parameters are optimized using stochastic gradient descent 

 



Vehicle Classifier – Qualitative 
Results 
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Visual Odometry 
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Outdoor Loop Closure Test 

22 

-40 -35 -30 -25 -20 -15 -10 -5 0

-10

-5

0

5

10

15

20

25
 

 

Visodo+IMU
Visodo

-40 -35 -30 -25 -20 -15 -10 -5 0

-2-10
 

 

Visodo+IMU
Visodo

Top View 

Side View 



FishEye Loop Closure  
Test Results 

23 

Outdoor Total Travelled 
Distance (meter) 

Loop Closure Error 
(meter) 

Drift Rate (%) 

Loop 1 Visodo 124.9396 1.1138 0.89 

Loop 1 Visodo+IMU 124.0460 1.0812 0.87 

Loop 2 Visodo 122.4757 0.8724 0.71 

Loop 2 Visodo+IMU 122.3237 0.7168 0.58 

Indoor Total Travelled 
Distance (meter) 

Loop Closure Error 
(meter) 

Drift Rate (%) 

Loop 1 Visodo 51.2833 0.4648 0.91 

Loop 1 Visodo+IMU 51.3082 0.3699 0.72 

Loop 2 Visodo 105.9501 0.5210 0.49 

Loop 2 Visodo+IMU 105.9180 0.5015 0.47 



RF+GPS Position Filter 
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Notation 

(Mc, M1, M2, M3, …Mm): m+1 mobile nodes, Mc is the central Visodo/IMU/GPS/RF 
node.  Other nodes are GPS/RF nodes. 
 
Mc - (Xc, Yc, Vc

X, Vc
Y) : The simplified representation from our error-state EKF 

Mi - (Ri, θi, Vi
X, Vi

Y, bi):  A normal EKF (no IMU, odometry) but in “relative-polar”(RP)  
                                      coordinate system. The origin is the position of Mc, which 
can move. 
                                    
Polar representation is less used in EKF,  
but recently has been proved to be better  
suited for applications such as navigation 
with mapping of static RF-ranging nodes.  
 
We developed a new relative-polar  
formulation in EKF for our application (moving  
RF-ranging nodes, no odometry information).  

Mc 

M1 

M2 

R1 R2 
θ1 θ = 0 

θ2 



Three Static Nodes - 2011.01.20-14.24.27 

GPS Only RP-EKF (GPS+RF-Ranging) 
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Loop closure test  

27 

Loop Closure 
Error (meter) 

Visodo 0.2554 

GPS 7.6335 

GPS+RF 4.3725 

Travelled Distance:  
74.69 meters 
 
Blue: Visual Odometry 
Yellow: GPS 
Green: RF + GPS 



Friend/Foe Labeling 
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Association Example 

*  People ROIs  
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Image and map displays 
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Image display 

   Map display                                    Detection display 

• 

ii ;;;;;;;;;o;,; :TS 



Image display 

   Map display                                    Detection display 

Friend 1 
Friend 2 

Foe 1 Foe 2 

First robot 
(Camera Location) 

Friend 3 (outside 
camera Field of View) 

Second robot 



Baseline Testing 

• Baseline testing for the system was performed with combination of 
Friends, Foes and vehicles at varying distances.   

• The Friends (up to three) and Foes (up to six) were systematically 
tested in varying combinations moving in front of the robots at 
ranges from 10 to 100 meters.   

• The Friends/Foes varied in speed and motion from a slow crawl to a 
fast sprint.   

• Similar testing was then preformed with automobiles.  One to three 
vehicles varying from parked to moving at 25 mph at ranges from 10 
to 100 meters.   

• The EETs then became more complicated.  Introducing various sets 
of Friends, Foes and vehicles in random patterns to try and find the 
failure point of the system.  
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2 Friends, 1 Foe at 40m (80deg camera) 

Baseline Testing 



Multiple tests (Fisheye camera) 

• Several tests: 
– Three friends at ~20m  
– Foes at 10, 20, 30 and 40m 
– Friends at 20 and 50m 



Scenario Testing 

• The first Scenario was setup with friendly forces being dug into their 
fighting positions with two fixed Combat Identification robots 
monitoring the fields of fire. The enemy could attack at any moment 
and the robots would have to identify if the personnel approaching 
the FOB were friendly forces or enemy forces before any friendly 
forces could engage the target. 

• The second scenario was identical to the first scenario with the 
exception that one of the Combat Identification robots could move 
across the field of fires in order to establish a better line of sight to 
identify the targets as friendly or enemy threats.   

• In the third scenario, the friendly forces conducted patrols from the 
FOB to a local village; upon returning from the mission the two fixed 
Combat Identification robots would have to identify the objects as 
friendly before access would be allowed into the FOB. 
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Scenario Testing 
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Conclusions 

• There is a need to increase available resources by eliminating tasks 
that are conducted by humans and having robots complete these 
tasks. The Combat ID system addresses this need by allowing for a 
broader field of view/line of sight and object movement detection 
then one single person can accomplish. 

• The CombatID program successfully showed that a unmanned 
robotic equipped with the CombatID payload could scan the same 
line of sight as a Solider.  

• As Soldiers and commanders become more accustomed robots on 
the battlefield, the acceptance and utility of CombatID like 
capabilities will become combat multipliers for the operational 
commander. 
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